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ABSTRACT

A heuristic approach to the derivation of power spectra of wave motion is described and

applied to capillary waves. The case of gravity waves studied earlier is briefly reviewed.

In contrast to the previous studies, the nonlinearity of the wave motion is not rcquimd  to be

small, and the mean number of resonantly interacting wave harmonics is not limited to a

smallest possible number (which is 4 for gravity waves on a deep fluid and 3 for capillary

waves). q“hc main extcmal  parameter of the problem is the input flux Q of the wave

energy related to the mean wind velocity as Q = U3. Depending on its value, wave spectra

S(co) DC w-q and F(k)= k-p take various forms - from that corresponding to the weak-

turbulcnce  limit and to that conesponding  to the saturated (Phillips’) wave spectra, Practal

dimensions of the sea surface arc related to external factors, specifically to the mean wind

speed. I’hc theoretically predicted spectra are in good qualitative agrccmcnt  with the

observations on capillary waves conducted in a large wave tank.

I*
The subject of this paper is turbulence of surface gravity and capillary waves, although

the fom~alism  presented hem can be applied to other oceanic and atmospheric wave

motions, such as intcmal  waves, Rossby  waves, etc. The nonlinearity of these wave

systems tends to be weak; hence, the corresponding problems are amenable to a treatment

by small ~rturbation  techniques [Zakharov  et al.; 1992]. Unfortunately, such techniques

do not account for highly nonlinear local  proccsscs associated with intennit[cntly  occurring

steep or breaking waves. While the strongly nonlinear events am rare, they may have an

appreciable effect on the overall energy trtmsfcr, hence on the spectra of wave turbulence.

III contrast to the previous work, we employ here a heuristic approach which goes beyond

the limit of weak nordincarity.  The well-known results of the weak turbulence theory

(WJT)  are derived as a special case.

‘1’hc most important accompljshmcnt  of Wl”I’ is its prediction of power-law spectra for

fields’ oscillations in space and time. Por example, the wavcnumbcr spectrum for spatial
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variation of a fluids surface, ?j(x;l), on scales of gravity waves is given by [ZMarov and

Pilinenko,  1966]:
Fn(k)  = a#2Q’i3k’7t2 (1.1)

in the range of capillary waves, the spectrum is [7akharov and ~;iloncnko,  1967]:
Fn(k)  = at&3’4Q’’2k-19’4 (1.2)

where ag and w are nondimensional universal (“Kolmogorov”)  constants, Q is the rate

of energy transfer down the spectrum (divided by the fluid density, p ), g is the

acceleration of gravity, and o is the coefficient of surface tension divided p. The angular,

@, dependence of these two-dimensional spectra is omitted for simplicity.

I’he spectral energy tmnsfer can be envisaged as a cascade process which manifests

itself in the surface topography [Glazman and Weichman,  1989] or in the surface temporal

oscillations: wavelets  of a continuously decreasing size ride on top of a large-scale wave

form. As a result, power spectra of surface height variations tend to be rather broad and, at

frequencies well above the spectral peak frequency, they exhibit a power-law behavior.
I/or a wavenumber  spectrum of form F(k) oc k-p, the exponent, p, is related to the

IIausdorff  (fractal) dimension, D]], of the surface elevation field: D}]= (8-p)/2 , which

affords an instructive interpretation of the quantities involved. In particular, wave spectra

can bc conveniently presented as [Glazman and Weichman,  1989; Glazman,  1990]
~(k) ~ k-4+2~ (1.4)

The value jf=l/4 corresponds to (1. 1), while p=O yields Phillips’ saturation spectra

discussed below. The meaning of p follows from the relationship

1>,[ =2+// (1.5)

} ]cnce, p represents the “fractal index,” This quantity invariably emerges in analytical

expressions for various geometrical properties of a random surfacz,  such as its mean

Gaussian curvature, root-mean-square slope, etc. [e.g., Glazman, 1990].

Apparently, the surface geornetiy  characterimd  by (1 .2) is not fractal bmause the

spectrum rolls off too rapidly giving p <0.  }Iowever,  as shown in section 2, the

surface’s temporal oscillations due to capillary waves, recorded at a fixed location,

represent a fractal process. In section 2 the range of fractal dimensions for <(t) with an

arbitrary degree of nonlinearity is estimated and Dfl is related to external parameters of the

problem.

At a sufficiently high external input of the wave energy, both the capillary and the

gravity wave turbulence becomes strong, and W1-l’ is not applicable. The limiting s~ctra

of strongl  y nonlinear wave fields are known as “saturated” spectra [Phillips, 1977]. They

are derived on the assumption that the energy  transfer down the spectrum occurs primarily

due to intermittent events of wave breaking rather than due to a Kohnogorov-type  inertial



cascade. lle latter is too slow to support a high rate of energy input, w}lile  the breaking of

(intermittently occurring sufficiently steep) waves allows the energy to be transferred to

small scales by sporadic “jumps” from much larger scales. Respectively, the energy flux Q

must not emerge in expressions for the wave spectra, and the limiting form is

F(k) = @4 , (1.6)

- as based on analysis of dimensions [Phillips, 1958]. This is valid for both capillary and
gravity waves [Phil]ips, 1977], and ~ is known as the P}~illips  constant,

llxpcrimental  observations consistently show that the actual spectra of surface waves,

while exhibiting a power law behavior (1 .4), are not limited to the forms (1.1),(1.2) and

(1.6): the exponent (hence, p in (1 .4)) spans the entire range - from the weak turbulence

limit (1.1 ),(1 .2) to the saturated spectrum limit (1 .6), - depending on the external

conditions (the energy input and its partition bctwccn  the component going dc)wn the

spectrum and that consumed by other mechanisms of the total energy budget - SW, e.g.,

[Glazman, 1993]). In w}~at follows we suggest a simple heuristic theory explaining this

behavior, and for the capillary wave spectrum we also provide comparison with laboratory

mcasunments.

21 Multwve  mkradm t] eorv  for surCamgriwUmuhuuMv waves
. . . 1 .. “1

The potential energy of the wave motion includes two components:

u=~ ~ J ““””-~Pg qzdx + cr (J1 +- Vi~ – l)dx (2.1)

The first one is due to the gravity force and the second due to the surface tension. Here,

?]+(x,I) is the elevation of the fluid surface above the zero-mean level. An approximate

cqui-partition  of energy between the kinetic and the potential parts allows one to

approximate the surface density of the total wave energy, E, by
Et = pgff (2.2a)

E. = cr(vq)2 (2.2b)
where component E8 is due to gravity waves and EC is due to capillary waves. These

quantities arc related to the spectral density of the wave energy by:

E= @o)dco = jjF(k,O)kdOdk == jG(k)dk  , (2.3)

where the integration is carried out over all wavcnunlbcrs/frequencies. 1 lcre, S(@) is the

frequency s~ctrum,  F’(k, @ is the tw~dimcnsional wavcnumbcr  spectrum and G(k) is

the wavenumber  modulus spectrum of the wave energy. Obviously, for gravity waves, the

relationship bet ween the energy spectrum, F of (2.3), and the surface height spectrum, F7j
of (1.1), is: F=pgFq, For capillary waves, this relationship is: F = crk2Fn .



]ncrtial flux of wave energy can bc envisaged as a cascade proms in the frequency
space: at each n -th step of the cascade, the amount of energy, cm , transferred from the

previous step is estimated as:

cm= ~S(@O= )G(k)dk (2.4)
0.1 k. ,

where ([on_l, on ) is the width of a cascade step (w}~ich is much sn~aller  than t}~e widt}~  of

the inertial range). Suppose, the characteristic time (the “turnover time”) of nonlinear

wave-wave interaction is [n. Then, the rate Q of energy transfer through the speetrum is

given by
Q=cnltn (2.5)

For both gravity and capillary waves, wc assume that the energy flux down the spectrm

remains constant, hence Q is independent of k and @. (A more complicated case of a

non-conservative cascade is treated in [Glazman, 1992]). Provided en and tn can be

expressed in terms of k, OJ and wave amplitude a, equation (2.5) allows one to derive the

spectrum by means of elementary algebra (e.g., [Frisch et al., 1978]). Hence, we need to

express these parameters in tcnns  of the relevant quantities.

From (2.2a) it is obvious that en for gravity waves can be written as

e. = pga~ (2.6a)

For capillary waves, equation (2.2b) points to the following expression for Crl :
f?” = cr(ankn)z (2.6b)

1 lcrc, an is the Fourier amplitude of surface oscillation at the frequcncylwavenutnber

scales @l and kzl, corresponding to the n -th step in the spectral cascade.

The derivation of the turnover time is formally based on the scaling of the collision

integral in the kinetic equation [7~kharov  and L’vov, 1975; Kitaigorodskii,  1983; Larazza

et al, 1987] for the wave action speetral  transfer. For the subsequent development it is

useful to introduce the turnover time in a more general, although less formal, fashion. ‘1’o

this end we notice that the nonlinearity of wave proeesscs  is measmd  by the ratio, F? of the

fluid particle vcloeity,  u, to the wave phase veloeity,  cdk [Witham,  1974]. Since fluid

particles in a surface wave execute an approximately orbital motion in the vertical plane

with the radius equal to the wave amplitude and the period 2tiaJ the value of u at a given

scale is found as ar1f012  . Respectively, the ratio u/(c/@ is

(2.7)

‘l%is quantity represents the small parameter in deterministic perturbation theories.

1 lowcver, since the kinetic equation describing wave action, N(k) =F’(k)/q  (or wave

energy, F(k) ) spectral transfer is derived for second statistical moments of the fields, the
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perturbation equations of statistical theory are developed in powers of c2. In such

equations, terms (i.e., collision integrals) of order t? correspond to three-wave

interactions, terms & cornxpond  to four-wave interactions [Zakharov  et al., 1992], etc. in

general, each additional Fourier component accounted for in the interaction integral adds

new terms which are E2 times as great as a preceding term. ‘1’hc v-th term is of order c2@-

2). ~es~ctively,  the characteristic  time of nonlinear wave-wave interactions increases as

the number of interacting harmonics grows. For 3-wave interactions, this time is estimated

as i] = CDC2, and for an arbitrary number, v, wc have

t
-1

= (M2(V-2) (2.8)

IJonnidablc  n~athcmatical  difficulties limit the kinetic equation to accounting only for the

lowest-order resonant interactions. 1 lowcver, one can formall y present it as
W / dl + V, ● T(k)= p(k) , (2.9)

where p(k) is the spectral density of the input flux of wave action (from wind), and
Vk . 7’(k) denotes the spectral density of the action flux due to all wave-wave interactions

to order v:
(2.10)V~ ● 7(k) = 13 +- 14-+,..+]V ,

IV arc collision integrals accounting for interactions among v waves satisfying resonance

conditions
(~o~ @l*,.,f@v  =()

kO~klf...fkv =()
(2.11)

(non-resonant tem~s can be eliminated by appropriate canonical transformations [Zakharov

et al., 1992]). For gravit y waves, the minimum number of resonantly interacting

components is 4, while for capillary waves it is 3.

It has been argued earlier [Glazman, 1992] that intermittently occurring, rare events of

steep and breaking waves (characterized by a locally high nonlinearity, hence a large, or

even infinite, number of interacting Fourier components forming individual cusp-like

wavclets),  result in an increased mean (over a large time interval and large surface area)

value of v. While this v may be substantially greater than the minimum resonant number

appearing in WIT, the energy and action transfer may still be dominated by the weakly

nonlinear inertial cascade. Thus, the “effective” v is introduced as an unknown function

of the problem, the assumption of locality of wave-wave interactions in the wavenumbcr

space remaining in force. Let us notice that the turnover time given by (2.8) for the

highest-order term in (2.10) is the” slowest of all the times for “partial” fluxes associated

with individual tem~s in (2.10). Therefore, although the total flux of the wave action,
Vk ● T(k), is comprised of many paflial fluxes 1-3, 14, etc., the appropriate charactcrist  ic

time for the integral transfer is given by (2.8).



Wc consider the case when the external input is concentrated at wavcnumbcrs  below

certain ~ marking the high-wavenumber  boundary of the “generation range.” Therefore,

at k > kO: p(k) = O, and a spectral flux is purely inertial. obviously, the energy flux

down the spectrum is given by

Q= j%(k)kdk jp(k,o)do
o - n

(2.12)

Respectively, equation (2.9) for the inertial range corresponds to

ql.)n(@J2@-2) = Q (= cow)

where n>] .

Using the dispersion relation for capillary
(2.1 3) yields e.= Q1’(v-’)o(v-2)’( v-’)(v’’(v-’).

(2. 13)

waves, co2 = CJk3 , and (2.6b),  equation
~“’hc  frequency spectrum is obtained by

noticing that (2.4) yields a scaling relationship: S(f.) M cm / [o, Introducing a

proportionality constant, w , playing the role of the Kolmogorov  constant, we ultimately

arrive at the energy spectrum for surface capillary waves:
s(~) n ~cQll(~-l)o(v-”2)/(  v-l)@- “/(”..1) (2.14)

This is related  to the frequency spectrum of the wave slope by Svv(@) = CJ-lS(CO),  wlmwis

the surface elevation spectrum is found as SV(OJ) = Sv~ (0)k-’ , i.e.:

Sq(co) = acQ I/( V-I)a(2V-5)/[3(  V-l)] a-(7 V-4)/[ 3( V-1)1 (2.15)

“l’he one-dimensional process dcscribcd  by (2.15) is fractal for all v23 : the 1 Iausdorff

dimension of tj(z) whose spectrum falls off as C@ is given by (SW, e.g., [Glazman a

Wcichman, 1989]) Dil  = (5-q)/2

Dtl =
8V–11
6(v–1)

l’hcrcfore, D}, >1 for all v 23,

Sq(@) = /kJ’’3(o-7’3

which translates into

(2.16)

The “Phillips spectrum” ( v + 00) takes the form

(2.17)

w}~ich yields D]l = 4/.? , while the Zakharov-Filoncnko  spectrum in the frequency domain,

s(a)) = (0-]7’6, yields D1l = 13112.

‘l-he surface elevation spectrum in the wavcnumber  domain (omitting the angular spread

factor) is found as:

‘~(k) =k-’[s~(’o)%la=a(k,= “Q
l/(v-l)o-9/[6(  v-1)] ~-(8v-5)/[2(v-1)] (2. 18)



(l’actor 3/2 is included into the Kolmogorov  constant cz~). I’his coincides with the

Zakharov-l:ilonenko  spectrum (1 .2) in a spccia] case of v=-.? , and it produces the Phillips

spectrum (1.6) at v + M. In the lat(er case, the surface becomes marginally fractal, that is:

111~ = 2.
It is also easy to show that the use of the gravity wave dispersion relation, C02 = kg, and

of (2.6a) in (2.13) yields spectra of surface gravity waves. in particular the frequency

spcctrLml of wave energy is [Glazman, 1992]:

~((jj)  c ~g~~l(v-])  @g S)(”-Z)/(V--l)  ~- (5v.8)Kv_I) (2.19)

This reduces to the Zakharov-12iloncnko  (1. 1) and Phillips (1.6) spectra at v = 4 and

v -+ 00, respectively.

$ l)c~  of v. . for the m~. .

Provided v is an increasing function of wind, (2.15) and (2.18) agree with the

laboratory observations by Jtihnc  and Ricmcr [ 1990] which show a monotonic decrease of

the spectrum slope (in the capillary range) as the wind increases from about 3 to about 9

n~/s.  Therefore, wc now must prove that v increases as the wind grows. In order to

avoid considering the entire problem of wave generation by wind, let us assume both the

energy flux, Q, arriving from the lower-fre.ucncy (gravity wave) range and the wave

spectrum in that range to be known. Our task is to match that spectrum with (2.15) and

(2. 18). Let @o designate the lowest-frequency boundary of the capillary range at which
Sn (@O) and Q arc specified based on the matching of gravity and capillary spectra at a

certain frequency @o. Taking (2. 15) at co = @O and solving it for v yiekk:

where

and

v=aO+ alV

3(Z0 – A)-- 51’+4Q0— . .
a“=~_A)–2]’+-7~0  ‘

(3.1)

3
a ’  

=  3(Z0 –A)–21’+-7Q0

Zo= log Sm(a)o), A = log w ,

Assuming that the gravity wave spectrum obeys the Phillips law (1.6), both a. and al

become independent of wind. T%crcforc,  since Q is proportional to the cube of wind

velocity, (3.1 ) confirms a gradual (actually, logarithmic) increase of v with an increasing

wind.
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q’hc JWnc and Riemcr [ 1990] experiments were conducted in a wave tank with the

wind fetch under 90 m. ~Jndcr such conditions, the gravity wave spectrum is developed

very poorly, hcncc it falls off at least as rapidly as (1.6). While additional experiments

would be desirable to cover cases of better developed seas, the experiments by Jiihne and

Ricmer provide an encouraging agreement with the above heuristic theory.
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